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Summary of findings 

1. Genetic correlations estimated based on GWAS results from three cohorts are very high on 

average for EstBB-FinnGen and FinnGen-UKBB pairs and slightly lower for EstBB-UKBB pair.  

2. For the majority of endpoints, heterogeneity was not detected. Out of 831 pruned genome-wide 

significant SNPs from 16 meta-analyses, 39 SNPs showed significant heterogeneity. 

 

Introduction 
The purpose of work package two so far has been mapping of types and availability of existing data 

among participating cohorts and providing input to partners to define flagship endpoints in partners’ 

datasets. Even though the definitions of endpoints are harmonized, the origin of the information (i.e 

hospital-based records, national registries, self-reported diagnoses, or combinations of many sources) on 

disease codes is different among partners, the accuracy of ICD codes varies across biobanks or some 

information might be missing for some endpoints. Therefore, even using harmonized definitions for 

endpoints does not guarantee that endpoints represent exactly the same phenotypes across cohorts. 

Genome-wide association studies (GWAS) are meant to test genotype-phenotype associations, using 

genetic variants across the genome. Usually millions of genetic variants are included in each study. These 

types of analyses provide insights into genetic architecture of diseases/traits, allowing researchers to 

detect novel disease-genetic variant associations1. This type of study allows hypothesis-free exploration of 

the genetic background of the disease and facilitates many post-GWAS analyses for further investigation. 

Post-GWAS analyses can be used to pinpoint causal variants and genes, map implicated biological 

pathways, cell types and tissues, and explore genetic architecture shared by traits both on single variant 

level as well as on a genome-wide level. 

Biobanks hold many different types of data about individuals, which allows researchers to construct a 

definition of a disease in several ways. Most of the biobanks have disease related information stored in a 

standardized way using either the ICD-10 or 9 classification. Drug prescription data and clinical 

measurements are also sometimes available. There may be other types of coding systems than ICD-10 or 

9 sometimes, including self-reporting of a disease. However, how one defines a phenotype - which 

combination of disease codes/clinical measurements/prescribed drugs should be included for a case and 

which codes excluded for a control - can be set up in a variety of ways. 
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The focus of this delivery is to study the consistency of the GWAS results for multiple phenotypes across 

cohorts participating within the INTERVENE project. If there are large inconsistencies, then it is possible 

that some ICD codes are used differently between different cohorts, different coding methods create 

slightly different phenotype or disease definitions (e.g. ICD10 code vs. ICD9, self-reported phenotypes 

etc.), the precision of coding is different (digits given in ICD10 code) etc. Furthermore, other sources of 

heterogeneity (like environmental factors) contribute to a phenotype or for example, some information 

necessary for defining an endpoint is missing in the cohort database. If large inconsistencies are found, it 

might be necessary to modify the definition of the flagship endpoint to achieve a better concordance of 

GWAS results among partners. To address this possibility, alternative definitions of endpoints are 

considered using FinnGen data and the correlation between flagship endpoints genome-wide association 

study results and alternative endpoints genome-wide association study results are systematically 

explored. 

 

Methodology 

This task includes three large parts: 

1. Running GWAS on flagship endpoints defined in deliverable 2.3.  

2. Heterogeneity between studies will be studied for available endpoints using genome-wide 

significant SNPs.  

3. Genetic correlations between individual biobanks’ GWAS results will be estimated using the LDSC 

(LD score regression) methodology. 

We will describe each of them separately in the following chapters. 

 

Genome wide association study plan: 

We proposed that all partners run genome-wide association analyses using Regenie or Saige2–5. These two 

were selected for the following reasons: 

• They allow inclusion of related individuals which maximises power to detect association 

• They are computationally efficient 

• They have been developed specifically for biobank-scale data 
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Both methods use saddle-point approximation to account for case-control imbalance, which can arise in 

the biobank setting if the binary trait in question is very rare. It is important to take this potential 

imbalance into account, since it can affect the effect estimates, especially for rare variants. 

Our GWAS study plan is based on the Global Biobank Meta-analysis initiative 

(https://www.globalbiobankmeta.org/; GBMI) GWAS plan. This was chosen because the GBMI includes 23 

biobanks around the world and they have had similar efforts to run GWASs across multiple cohorts in a 

unified way while including relatives. 

Both SAIGE and Regenie perform single-variant association tests for binary traits and quantitative traits. 

For binary traits, it is possible to use the saddlepoint approximation (SPA) to account for case-control 

imbalance. 

According to the analysis plan, the following standard association model was used: 

Phenotype ~ variant + age + sex + PCs + biobank_specific_covariates 

Here, biobank-specific covariates stand for covariates used to correct technical artifacts (such as 

genotyping batch) and not risk factors or other comorbidities.  

Cohort-level analyses were filtered based on imputation INFO score and/or MAF values, specifics in 

Results.  

Due to the heavy computational burden of each GWAS analysis (for example, a logistic mixed model with 

SAIGE for a binary phenotype in UKBB requires 517 CPU hours and 10.3G of memory6, and although 

Regenie is somewhat better in this respect, whenever possible, already calculated summary statistics 

were used to reduce computational costs and associated CO2 footprint4.  

  

https://www.globalbiobankmeta.org/
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GWAS meta-analysis 

After collecting cohort-level GWAS summary statistics, the files were converted to b37, if necessary, using 

the binary liftover tool (https://liftover.broadinstitute.org/), and formatted to contain the following 

necessary columns:  

1. Marker name in the format of chromosome:position:A1:A2, whereby A1 and A2 stand for the two 

alleles of this marker in alphabetical order. This format was chosen to make sure the marker names 

in each cohort file have a standard and uniform format. Alleles were ordered alphabetically, 

because the effect allele might differ in each cohort. 

2. Chromosome  

3. Position  

4. Effect allele 

5. Non-effect allele 

6. Rs-number 

7. Beta (effect size) 

8. SE (standard error of the effect size) 

9. EAF (effect allele frequency in the cohort) 

10. N (sample size for the cohort) 

 

We then proceeded to conduct a GWAS meta-analysis. Current data freeze includes only individuals with 

genetic European ancestry.  

For meta-analysis, we chose the GWAMA software7, since the method is open-source, and provides a 

wide range of meta-analysis summary statistics, including two different measures for heterogeneity. 

Evaluating heterogeneity between different cohorts gives a proxy measure for estimating consistency in 

endpoints‘ definitions across cohorts. The Cochran's statistic provides a test of heterogeneity of allelic 

effects for each genetic variant. An alternative statistic, I2, quantifies the extent of heterogeneity in allelic 

effects across studies, over that expected by chance, and is more robust to variability in the number of 

studies included in the meta-analysis.  

After the meta-analysis for each endpoint, we defined genome-wide significant signals (variants with an 

association p-value < 5x 10-8). This threshold was chosen because it is the gold standard for statistically 

reliable associations in GWAS. Then we evaluated the heterogeneity statistics for these variants and 
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created forest plots for variants with significant heterogeneity to evaluate effect sizes across cohorts and 

detect sources of heterogeneity.  

 

LD Score regression for genetic correlations 

LD Score regression (LDSC)8 is a method for estimating heritability and genetic correlation9 (rg) from GWAS 

summary statistics. This method was chosen because it is open source, takes summary statistics as an 

input, and there is no need for individual level data. The method is also computationally efficient and thus 

suitable for the purposes of this delivery. It is widely used in the genetic epidemiology field, as illustrated 

by the current number of citations (1654), and therefore thoroughly tested. In short, the method aims to 

quantify the separate contributions of polygenic effects and various confounding factors, such as 

population stratification, based on summary statistics from GWAS. The LDSC is suitable for ancestry-

matched data (for example, all GWAS summary statistics are from European ancestry samples). If one 

should have multi-continental GWAS data, the right approach is to estimate genetic correlation for each 

continent separately then average the results10. Current data freeze includes only individuals with genetic 

European ancestry.  

 

LDSC provides both the SNP-heritability estimate (h2
SNP) based on each GWAS summary file together with 

the standard error (SE) estimate and genetic correlation (rg) estimate between GWAS summary results. 

We also calculate confidence intervals (1.96* LDSC standard errors on either side of the point estimate) 

for h2
SNP and rg.  

 

By calculating the genetic correlations between endpoint GWAS summary statistics, we can estimate the 

degree to which genetic variants have a consistent effect across biobanks. There are a couple of notes 

about the results and behaviour of LDSC. First, LDSC is not a bounded estimator with +-1, so it can 

produce estimates outside of these values due to sampling variation11. Therefore, unlike Pearson 

correlation estimates, the ld score regression based estimates of genetic correlations may have values 

below -1 and over 1, but the interpretation of these values is similar to the Pearson correlation coefficient 

being close to -1 or 1, in case they do not deviate too much from abs(1). Second, standard errors of 

genetic correlations are roughly a function of the sample size of GWAS and heritability estimates. 

Therefore, when sample size is small and/or heritability estimates are low, SE will be large and it is likely 

not possible to get stable rg estimates11. It is generally said that if heritability results are not significantly 
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different from zero for either trait (can happen when cohort-level GWAS results are under-powered or 

when loci of large effect size exist within the GWAS), then genetic correlation results are not likely to be 

reliable. To address the possibility of heritability being statistically indifferent from zero, we define a 

subset of endpoints in that way that h2
SNP estimate is not zero (ie 95% CI do not include 0) for either 

GWAS included in LDSC, calling them “reliable subsets”. We also set a threshold for pairwise rg, defining 

cohort-wise correlation for an endpoint high if it was above 0.8 (lending the threshold for “high” from 

imputation related articles, where r2 is squared correlation between known genotypes and imputed allele 

dosages, high often defined as 0.7 or 0.812–14) and would suggest considering alternative definition for an 

endpoint if pairwise correlation for an endpoint between any two cohorts were lower and meta-analysis 

results would support heterogeneity among genome-wide significant SNPs.  

LDSC analysis was carried out centrally for biobank-wise genetic correlations. All of the GWAS summary 

statistics were reformatted before running LDSC using the munge_sumstat tool included in the LDSC 

github repository15. Because imputation quality is a confounder for LDSC and as the GWAS summary 

statistics did not include information about imputation quality, the SNPs were filtered using the HapMap3 

SNPs (https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2) as suggested, because 

these are usually well imputed16. The default parameters were used for munge_sumstat as well as for 

LDScore regression analysis. Pre-computed LD Scores 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2) from 1000 Genomes 

European data were used for estimating genetic correlations as advised in the tutorial for LDSC.  

 

Workflow description for calculating genetic correlations between index flagship endpoints 

and alternative definitions 

For each flagship endpoint, we queried two alternative definitions using the FinnGen’s database 

developed to explore results per phenotype (https://risteys.finngen.fi/). Alternative endpoints were 

selected that way that the overlap with the flagship endpoint cases were maximized as we are most 

interested in the endpoints as they are defined already and were looking for alternatives which would 

slightly alternate the definitions, preferably definitions of controls. Overlap was queried from the table 

“Correlations”, while searching for flagship endpoint FinnGen’s name (as given in Table 1) and sorting for 

“case overlap” (see Figure 1, an example for Asthma). Queries were done during 12.05-24.05.2022 and on 

17.06.2022 (for I9_STR and I9_VTE, for which the database gave an “internal server error” earlier). For 

eight alternative definition endpoints the GWAS summary statistics were not available, each of these 

https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://risteys.finngen.fi/
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endpoints was substituted using the next endpoint in the correlation table for which the summary 

statistics were available. 

  

Figure 1. An example of querying alternative endpoint definitions for Asthma from FinnGen’s database, using case 
overlap for sorting possibilities.  

 

After collecting the GWAS summary statistics for possible alternative definitions, the files were converted 

to b37, reformatted using the munge_sumstats tool and the pairwise genetic correlations were calculated 

with the LDSC method between each flagship endpoint and its alternative definition endpoints.  

 

Results 

Overview of cohorts participating in GWAS meta-analysis 

By the beginning of June 2022, data freeze was done to perform the first round of analyses. By that time, 

UKBB, FinnGen (which includes the Biobank of Helsinki data, therefore not separately analysed) and EstBB 

had delivered the GWAS results. Total number of cases for endpoints delivered by all participating 

biobanks separately and together is presented in Table 1. All endpoints, including ones only present in a 

subset of GWAS are in Supplementary Table 1. 
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Table 1. Sample sizes for evaluated endpoints present in all participating biobanks 

Endpoint name in 
FinnGen manifest 

  

Partners (n of cases/controls) Total 

FinnGen EstBB UKBB  cases controls 

C3_COLORECTAL 4401/256004  1725/ 198143  7269/ 400837  13,395 854,984 

C3_BREAST 11573/135488  2690/ 128295  13947/ 206669  28,210 470,452 

T2D 37031/214308  12425/187443 28668/386926  78,124  788,677 

C3_PROSTATE 8709/104635  2266/ 66617  10825/176665  21,800  347,917 

I9_CHD 25707/234698  17594/ 182274 26972/347119  70,273  764,091 

I9_STR 14351/238854  4575/ 195293 10394/ 360479  29,320  794,626 

G6_AD_WIDE 7329/252879  558/ 199310  2160/ 405946  10,047  858,135 

F5_DEPRESSIO 28098/228817  51926/ 147942 36838/382918  116,862  759,677 

RHEUMA_SEROPOS_OTH 5793/254548  2389/ 197479 985/ 373007  9,167  825,034 

I9_VTE 11288/249117  13202/ 186666 13273/ 360818  37,763  796,601 

M13_OSTEOPOROSIS 3960/249139  9714/ 190154 16327/ 355286  30,001  794,579 

AUD_SWEDISH 14864/245541  10119/ 189749 8941/ 365150  33,924  800,440 

E4_HYTHYNAS 32871/221975  14238/ 185630 24458/ 345172  71,567  752,777 

G6_EPLEPSY 7224/208845  4997/194871  5402/ 402704  17,623  806,420 

GE_STRICT 1751/253181  276/199592 617/ 414698  2,644  867,471 

FE_STRICT 728/253181  1875/197993  553/ 407553  3,156  858,727 

 

Summary Data for FinnGen is publicly available (https://www.finngen.fi/en/access_results, release R617). 

Total sample size of the FinnGen cohort used in GWAS was ~260,000 and in total, ~17 million variants 

were included in the analyses. Analyses were performed with SAIGE v0.39.1. All models were adjusted for 

sex, age, 10 PCs and genotyping batch (see https://finngen.gitbook.io/documentation/methods/phewas). 

https://www.finngen.fi/en/access_results
https://finngen.gitbook.io/documentation/methods/phewas
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Only variants with minimum allele count of 5 (SAIGE optionminMAC = 5) and INFO>0.6 are included (more 

details about QC here: https://finngen.gitbook.io/documentation/methods/phewas/quality-checks) 

The Estonian Biobank cohort had a total sample size of ~200,000 individuals and approximately 30M 

variants in the GWAS analyses. Analyses were performed with Regenie v2.2.4 and all models were 

adjusted for sex, age and 10 PCs. Regenie default settings filter out variants with a MAC <5, and before 

meta-analysis, all variants with an imputation INFO score < 0.4 were excluded. 

For UKBB (with sample size of ~400,000), we had 2 phases of GWAS were performed: first set consisted of 

10 diseases (AUD_SWEDISH, E4_HYTHYNAS, F5_DEPRESSIO, GE_STRICT, I9_CHD, I9_STR, I9_VTE, 

M13_OSTEOPOROSIS, RHEUMA_SEROPOS_OTH, T2D). Those analyses were done with SAIGE and a filter 

comparing the MAF reported in the gnomAD EUR population and UKBB population was applied (removing 

SNPs with difference greater than 0.2), leaving sumstats with ~25 million SNPs. Second phase was 

performed for 6 diseases with REGENIE v3.1.1 to analyze the data with about 61M SNPs included. SNPs 

with INFO>0.3 were included in the shared sumstats. Models were adjusted for sex, age 10PCs, 

genotyping batch and assessment centre. Two different programs were used as GWAS were performed in 

two stages by two different people. Some endpoints did not have summary statistics available yet by the 

time of the first data freeze but will be added in the near future. 

EstBB and UKBB data used only ICD codes to define the phenotypes whereas FinnGen additionally used 

KELA prescription codes.  

 

Meta-analysis and heterogeneity in SNP effect estimates 

We conducted GWAS meta-analyses for the phenotypes described above using GWAMA as described in the 

Methods section. Only endpoints with all three cohorts contributing were analyzed. To evaluate the 

heterogeneity between different cohorts (and thus different endpoint definitions), we first looked at the 

distribution of the I2 statistic from the meta-analysis. In brief, I2 quantifies the extent of heterogeneity in 

allelic effects among cohorts, estimating the probability (from 0 to 1) that there is heterogeneity in this 

locus. For this part of the analysis, we extracted variants with a meta-analysis p-value less than 1 x 10-5. This 

threshold was chosen since it is often used in GWAS studies as the so-called threshold of suggestive 

significance. We only considered sentinel variants from each hit locus by pruning those significant loci and 

removing variants in 100Kb distance from the top variant.  

https://finngen.gitbook.io/documentation/methods/phewas/quality-checks
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We identified a total of 4567 regions with a sentinel variant p-value less than 1 x 10-5 in the meta-analysis. 

The distribution of I2 values for these signals can be seen on Figure 2. While for the majority of 

phenotypes, the median I2 value for these variants was 0, RHEUMA_SEROPOS_OTH, I9_VTE and I9_CHD 

exhibited higher I2 values (0.23, 0.46, 0.24, respectively). 

We then focused on only genome-wide significant variants (p<5x10-8). In this analysis we only considered 

sentinel variants from each hit locus by pruning the genome-wide significant loci and removing variants in 

500Kb distance from the top variant. We identified 831 genome-wide significant variants. Of these, 39 

show statistically significant heterogeneity (Cochran’s p-value < 0.05/897=5.6 x 10-5) and 90 loci have an I2 

value larger than 0.8. The forest plots showing effect estimates in individual cohorts for the 39 statistically 

significantly heterogeneous loci can be found 

https://docs.google.com/document/d/10cJmHaNvXtbpQGHiF3SHIvMFtYgTOz0_iZY_z9IRwvI/edit?usp=sha

ring).  

While for some loci, the heterogeneity might be caused by allele frequency differences in participating 

cohorts, for others the allele frequencies do not differ substantially and cohort- or endpoint-specific 

effects are likely. For example, C3_PROSTATE, where the effect allele frequencies differ 2 to 5 times 

between cohorts for both rare (minor allele frequency <1%) and common (minor allele frequency >1%) 

variants and largest effect estimates are seen in FinnGen, where the heterogeneous loci also have the 

highest minor allele frequency. For phenotypes with an autoimmune etiology (E4_HYTHYNAS, 

J10_ASTHMA, RHEUMA_SEROPOS_OTH), the detected heterogeneous loci are in the HLA region on 

chromosome 6, which is very diverse across populations. Although for these loci we see no differences in 

allele frequencies across the evaluated cohorts, it is still possible we are capturing some population-

specific effects with our analysis. As to cohort-specific effects, for certain later-onset phenotypes (such as 

cardiovascular traits or autoimmune diseases), the age-distribution in the studied cohorts might also 

affect the observed heterogeneity. 

https://docs.google.com/document/d/10cJmHaNvXtbpQGHiF3SHIvMFtYgTOz0_iZY_z9IRwvI/edit?usp=sharing).
https://docs.google.com/document/d/10cJmHaNvXtbpQGHiF3SHIvMFtYgTOz0_iZY_z9IRwvI/edit?usp=sharing).
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Figure 2. Density plots of I2 values for sentinel variants with a p-value less than 1 x 10-5 in the meta-analysis. Median 
values are shown with a vertical line.  

 

Genetic correlations 

Some of the rg estimates are out of bound due to too small sample size of GWAS, statistically insignificant 

h2
SNP estimate (or two small h2

SNP values) or due to too large SE-s of h2
SNP. This was expected, as some of 

the flagship endpoints are with low prevalence in individual biobanks. We did not filter out any endpoints 

based on effective sample size or ratio of expected/observed variability. 

For each analysis, some warnings about unstable rg or h2
SNP were reported (see Tables here: 

https://docs.google.com/spreadsheets/d/1EVTEbMO2fJwr6AzbAb_gGWio8SKgICU1/edit?usp=sharing&o

https://docs.google.com/spreadsheets/d/1EVTEbMO2fJwr6AzbAb_gGWio8SKgICU1/edit?usp=sharing&ouid=105250623214509639753&rtpof=true&sd=true
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uid=105250623214509639753&rtpof=true&sd=true, column “warnings”). For EstBB-FinnGen analysis, 

I9_SAH, C3_MELANOMA_SKIN, C3_BRONCHUS_LUNG and FE_STRICT had rg < 0.8 and for SAH and 

MELANOMA, the correlation was even negative (see Table 2). However, for all of them, the h2
SNP 

estimates were not different from 0, se of rg are large and therefore rg estimates unstable. For EstBB-

UKBB analysis, C3_PROSTATE and I9_VTE had rg ~ 0.75 and h2
SNP estimates were statistically different from 

zero.  

Table 2. Endpoints with rg estimates below 0.8 in any cohort-pair analysis 

FinnGen_name rg rg_se  cohort_pair 

I9_SAH -1.1129 1.3908 EstBB_FinnGen 

C3_MELANOMA_SKIN -0.0736 1.2720 EstBB_FinnGen 

C3_BRONCHUS_LUNG 0.3423 0.6734 EstBB_FinnGen 

FE_STRICT 0.5559 1.9132 EstBB_FinnGen 

C3_PROSTATE 0.7476 0.1871 EstBB_UKBB 

I9_VTE 0.7478 0.1413 EstBB_UKBB 

 

We further investigated rg estimates in “reliable” subsets as defined in the methods section. For EstBB-

Finngen, 19/34 endpoints had h2
SNP for both biobanks significantly different from zero and their rg 

estimates varied between 0.91-1.24 (median 1.043), indicating significant overlap in genetic effects across 

biobanks. While estimating genetic correlations for EstBB-UKBB GWAS, 9/17 endpoints had h2
SNP 

estimates based on both biobank GWAS statistically different from zero and for those 9, rg estimates 

varied 0.748-0.968 (median 0.878). For FinnGen-UKBB, in total 11/17 endpoints belong to the reliable 

subset. For those endpoints, rg estimates varied between 0.875 and 1.263 (median 1.14). Genetic 

correlation estimates with 95% CI are presented in Figure 3 for endpoints, which h2
SNP estimate in each 

cohort was not zero.  

 

https://docs.google.com/spreadsheets/d/1EVTEbMO2fJwr6AzbAb_gGWio8SKgICU1/edit?usp=sharing&ouid=105250623214509639753&rtpof=true&sd=true
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Figure 3. Pairwise genetic correlation estimates for endpoints, which had h2
SNP  estimate statistically different from 

zero based on both input GWAS. Large variability for some endpoints with very low h2
SNP estimate in at least one 

cohort can be observed. Dashed lines are r=1 and r=0.8.  

 

Overall, it seems that FinnGen-EstBB and FinnGen-UKBB GWAS datasets are very strongly correlated, 

whereas EstBB-UKBB datasets show slightly lower rg estimates on average. Majority of genetic 

correlations are high (median 1.03, interquartile range (IQR) 0.913-1.146), lending support to the 

hypothesis that flagship endpoints’ definitions tend to measure the endpoints similarly in different 

biobanks. However, one must note that a. only about half of the endpoints belonged to the “reliable set” 

based on cohort-specific h2
SNP variability and b. some of the standard errors of rg are still quite large 

(Figure 3) in “reliable set”, often for those endpoints, which have at least one h2
SNP estimate close to zero. 

Even when rg itself is >0.8, 95% CI lower half for several endpoints are below 0.8. All pairwise rg estimates 

are plotted in Supplementary Figure 1. 

We also hypothesized that rg may depend on the age of onset for diseases (Figure 4), as this may reflect 

different disease etiology (more severe cases may have earlier onset). For endpoints like VTE, ASTHMA, 

G6_AD_WIDE and RHEUMA_SEROPOS_OTH exhibiting more heterogeneity in effect sizes (Figure 2), age 

at first available diagnosis also seems to vary between cohorts. For some endpoints (such as GE_STRICT 

and T1D), which generally are early-onset diseases, we see significantly later age at first diagnosis in the 

UKBB. However, it is likely that this is an artefact that stems from the fact that ICD-based electronic NHS 

hospital inpatient records are available starting from 1996 (England from 1996, Scotland from 1997 and 

Wales from 1998) in the UKBB, and given the age distribution for this cohort (aged 40-69 at enrolment18), 

the initial diagnoses are simply missing from the data.  
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Figure 4. Age at first diagnosis for cases for each evaluated endpoint in all three cohorts.  

 

Genetic correlations between flagship endpoints and alternative considered definitions 

using FinnGen data 

We had proxies for 32 endpoints - for two endpoints (I9_ABAORTANEUR, I9_THAORTANEUR), GWAS 

results from the FinnGen R6 database were not found, therefore no alternatives could be looked for. As 

mentioned before, we prioritized selecting alternative endpoint definitions (two per each index endpoint) 

in a way that preferably cases remained as similar as possible, and controls were modified.  

The case overlap for first alternative endpoints varied between 27%-100% (IQR 63.4%-100%), second 

alternative endpoints had case overlap between 2.8%-100% (IQR 51.8%-89.7%). The median genetic 

correlation between first alternative and index endpoints as well as second alternative and index 

endpoints was 1, IQR varied roughly between 0.99-1.06 in both scenarios. For some endpoints, estimating 

h2
SNP or rg was not possible due to technical reasons. All genetic correlations between index phenotype 

and alternatives for each phenotype are seen in Figure 5. 
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Figure 5. Pairwise genetic correlations between the index flagship endpoint and two alternatives (if possible) selected 
from Finngen’s database. Blue colour indicates the heritability estimate (h2

SNP) for alternative endpoint is statistically 
different from 0 (95% CI do not include 0), red indicates that h2

SNP estimate based on GWAS of the alternative 
endpoints is not significantly different from zero. If h2

SNP is not statistically different from zero, it usually indicates 
unstable rg estimates. 

 

We can see that almost all endpoints have an alternative definition which correlates highly with the index 

phenotype. However, C3_CANCER does not seem to have a very similar alternative and some endpoints 

have alternatives, which rg estimates have large variability, therefore less likely to be considered as 

possible alternative definitions. 

All pairwise correlations between index endpoints and two alternative definitions with more details can 

be found in the Supplementary Table1 

 

Discussion and next steps 

Four large biobanks (EstBB, Finngen - including Helsinki Biobank, and UKBB) contributed to the genome-

wide association studies bringing total sample size for most of the endpoints around 850,000. All 

participating cohorts reported GWAS results for European ancestry.  

Based on our evaluation of genetic loci identified in GWAS meta-analysis of the tested endpoints, around 

5% of genome-wide significant loci exhibit statistically significant heterogeneity. While in some cases, it 

 
1 

https://docs.google.com/spreadsheets/d/1EVTEbMO2fJwr6AzbAb_gGWio8SKgICU1/edit?usp=sharing&ouid=10525
0623214509639753&rtpof=true&sd=true.  

https://docs.google.com/spreadsheets/d/1EVTEbMO2fJwr6AzbAb_gGWio8SKgICU1/edit?usp=sharing&ouid=105250623214509639753&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1EVTEbMO2fJwr6AzbAb_gGWio8SKgICU1/edit?usp=sharing&ouid=105250623214509639753&rtpof=true&sd=true
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can be attributed to allele frequency differences between analyzed populations, for others the allele 

frequencies are similar and differences in endpoints seem a plausible candidate to explain the observed 

heterogeneity. Potential sources for endpoint heterogeneity can include environmental factors, different 

age distribution in cohorts, sources of ICD codes (inpatient/hospital data or primary health care, whereby 

hospitalized cases likely reflect more severe cases) or inherent differences in how ICD codes are used by 

medical systems across countries. In line with this, our comparison of age at diagnosis distribution in 

analyzed cohorts shows that for endpoints, where age at diagnosis is used for definition, it is important to 

also consider the source of data and how far back it goes, as in older cohorts, early-onset diagnoses might 

be missing from the data if electronic health records are incomplete.  

Most of the genetic correlations between cohorts are high - median being 1.03. EstBB-FinnGen GWAS 

results were more strongly correlated that EstBB-UKBB GWAS results. FinnGen-UKBB genetic correlations 

were overall high. A few endpoints (like VTE and PROSTATE cancer) with statistically significant 

heterogeneous loci also have rg estimates lower than 0.8 at least in one cohort-pair analysis. Therefore, it 

could be worth either to consider alternative definitions for these endpoints (as they exist with high rg 

based on FinnGen data, see Figure 5) or inclusion of some threshold on age of first onset in the current 

definition to try to lessen the heterogeneity between cohorts. However, 95% CI for those two endpoints 

still include 1, so we cannot make a definite conclusion about rg being too low to continue with current 

endpoint definition. 

One downside of LDSC is that only for about half of the phenotypes, for which GWAS results were 

available, heritability estimates in both biobanks under investigation differed significantly from zero. This 

in combination with warnings from LDSC stating that estimated h2
SNP or GWAS N is too low to calculate 

genetic correlations means that some of the genetic correlation estimates have quite a large standard 

error, making rg estimates unstable and therefore not highly trustworthy to make any conclusion based 

on them. This is an overall limitation of using genetic methods for estimating endpoint heterogeneity. 

Genetic methods are sensitive to heritability of an endpoint and overall power of GWAS to reliably detect 

genetic associations in a given sample size (.../“GWAS with small effective sample sizes have insufficient 

power for LDSR to detect polygenic effects, leading to near-zero estimates of heritability”/19). We currently 

have not done any filtering like UKBB has (based on effective sample size as well as h2
SNP being statistically 

different from 020). In their post, they say that Neff < 4500 (which translates roughly to 1100 cases for 

EstBB and FinnGen sample size) translates to no confidence in LDSR h2
SNP results and use only phenotypes 
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with at least Neff > 40,000 in their LDRS analysis with some additional filters. In the second stage analysis, 

different Neff and h2
SNP filters will be tried in our analyses.  

We have performed a genetic LDSC analysis between flagship index endpoints and possible alternative 

definitions, using FinnGen data. For almost all index endpoints, there are alternatives available with high 

genetic correlations. However, having any cancer diagnosis (C3_CANCER) did not have a good alternative 

and a few endpoints had alternatives, for which rg estimates varied significantly. It should also be noted 

that the alternative definitions we evaluated are also based on the ICD classification system. As a result of 

the harmonization activities taking place in Deliverable 2.4, in the future it might also be possible to 

evaluate alternative endpoint definitions based on for example self-reported data or data extracted from 

additional sources such as epicrises while using specific key-words or -phrases, which will allow for further 

comparisons to be made. 

Our results provide insights for planning further analysis steps. Overall high genetic correlations indicate 

that selected definitions for endpoints tend to perform similarly across participating cohorts. Based on 

heterogeneity and genetic correlation analyses, definitions of VTE and prostate cancer seem to perform 

differently across biobanks and alternative definitions could be considered. Once UKBB results for the rest 

of the endpoints can be included, a comprehensive list of endpoints showing significant heterogeneity 

and low rg estimates can be determined. It is important to note that in further polygenic risk score (PRS) 

related analysis, careful consideration of how to select individuals into analysis for some endpoints like 

T1D or K11_APPENDACUT, where age of onset cannot be determined due to possible truncation of 

diagnosis data in some biobanks, must be performed.  

 

One should note that even though GWAS for some endpoints were under-powered to accurately estimate 

heritability or genetic correlations between cohorts, similar caveats are not applicable for PRS analyses 

as:  

1. Selected endpoints have been shown to have a genetic component and our input summary 

statistics selected to construct PRS are more highly powered than individual GWAS from our 

partners  

2. As PRSs tend to have higher effects than any individual common SNP, PRS-phenotype associations 

can be detected even for low prevalence diseases. So unstable rg results do not automatically 

mean that a specific endpoint should be excluded from further analysis.  
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In the current data freeze, participating cohorts have contributed only with individuals from European 

ancestry. Therefore, we are unable to address how well are endpoint definitions transferable between 

cohorts with more diverse genetic backgrounds or how well current endpoint definitions capture flagship 

diseases in cohorts with different coding systems than ICD-9/10. It is also important to note that the age 

structure varies in different biobanks - while the UKBB participants are relatively older (aged 40-69 at 

enrolment), the EstBB for example includes all adult volunteers, so the youngest biobank participants are 

18 years old. While age or year of birth is commonly used as a covariate in GWAS analyses, it can still 

affect the results. We will perform a second stage analysis of genetic correlations once all partners with 

more diverse data are able to contribute.  
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Supplementary Figures and Tables 

 

Supplementary Figure 1. All pairwise genetic correlations which LDSR provided with 95% CI plotted. For T1D, CI are 
truncated at (-5,5) to make the graph more informative.  
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Supplementary Table 1. Sample sizes for all evaluated endpoints  

Endpoint name in FinnGen 
manifest  

Partners (n of cases/controls) Total 

FinnGen EstBB UKBB cases controls 

C3_CANCER 51271/209134 17546/182322 
   

C3_COLORECTAL 4401/256004 1725/198143 7269/400837 13,395 854,984 

C3_BREAST 11573/135488 2690/128295 13947/ 206669 28,210 470,452 

T2D 37031/214308 12425/187443 28668/386926 78,124 788,677 

C3_PROSTATE 8709/104635 2266/66617 10825/ 176665 21,800 347,917 

I9_CHD 25707/234698 17594/ 182274 26972/347119 70,273 764,091 

I9_SAH 1620/238926 408/199460 
   

C3_MELANOMA_SKIN 143/260262 1383/198485 
   

J10_ASTHMA 25544/158452 23402/ 176466 
   

I9_HEARTFAIL_NS 30459/229946 26203/ 173665 
   

I9_STR 14351/238854 4575/195293 10394/ 360479 29,320 794,626 

G6_AD_WIDE 7329/252879 558/199310 2160/ 405946 10,047 858,135 

T1D 3440/214308 501/199367 
   

I9_AF 28670/135821 11917/ 187951 
   

N14_CHRONKIDNEYDIS 4959/252950 4263/ 105605 
   

F5_DEPRESSIO 28098/228817 51926/ 147942 36838/382918 116,862 759,677 

C3_BRONCHUS_LUNG 3061/257344 879/ 198989 
   

RHEUMA_SEROPOS_OTH 5793/254548 2389/197479 985/373007 9,167 825,034 

K11_IBD_STRICT 4611/249705 2105/197763 
   

I9_VTE 11288/249117 13202/ 186666 13273/360818 37,763 796,601 

I9_THAORTANEUR 
 

924/198944 
   

I9_ABAORTANEUR 
 

329/199539 
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COX_ARTHROSIS 13119/203797 22352/ 177517 
   

KNEE_ARTHROSIS 27799/203797 38755/ 161113 
   

M13_OSTEOPOROSIS 3960/249139 9714/190154 16327/355286 30,001 794,579 

AUD_SWEDISH 14864/245541 10119/ 189749 8941/ 365150 33,924 800,440 

E4_HYTHYNAS 32871/221975 14238/ 185630 24458/345172 71,567 752,777 

G6_SLEEPAPNO 20279/239125 9049/190819 
   

IPF 1178/233040 117/199751 
   

ILD 2351/233040 546/199322 
   

GOUT 4502/241230 10729/ 189139 
   

H7_GLAUCOMA 10485/249920 15016/ 184852 
   

G6_EPLEPSY 7224/208845 4997/194871 5402/ 402704 17,623 806,420 

GE_STRICT 1751/253181 276/199592 617/414698 2,644 867,471 

FE_STRICT 728/253181 1875/197993 553/ 407553 3,156 858,727 

K11_APPENDACUT 18798/240075 13497/186371 
   

BMI 
 

190227 
   

 


